
Subscriber access provided by American Chemical Society

Journal of Medicinal Chemistry is published by the American Chemical Society. 1155
Sixteenth Street N.W., Washington, DC 20036

Article

Enhancing the Effectiveness of Similarity-Based
Virtual Screening Using Nearest-Neighbor Information

Jrme Hert, Peter Willett, David J. Wilton, Pierre Acklin,
Kamal Azzaoui, Edgar Jacoby, and Ansgar Schuffenhauer

J. Med. Chem., 2005, 48 (22), 7049-7054• DOI: 10.1021/jm050316n • Publication Date (Web): 01 October 2005

Downloaded from http://pubs.acs.org on March 29, 2009

More About This Article

Additional resources and features associated with this article are available within the HTML version:

• Supporting Information
• Links to the 6 articles that cite this article, as of the time of this article download
• Access to high resolution figures
• Links to articles and content related to this article
• Copyright permission to reproduce figures and/or text from this article

http://pubs.acs.org/doi/full/10.1021/jm050316n


Enhancing the Effectiveness of Similarity-Based Virtual Screening Using
Nearest-Neighbor Information

Jérôme Hert,† Peter Willett,*,† David J. Wilton,† Pierre Acklin,‡ Kamal Azzaoui,‡ Edgar Jacoby,‡ and
Ansgar Schuffenhauer‡

Krebs Institute for Biomolecular Research and Department of Information Studies, University of Sheffield, Western Bank,
Sheffield S10 2TN, U.K., and Novartis Institutes for BioMedical Research, CH-4002 Basel, Switzerland

Received April 7, 2005

We test the hypothesis that fusing the outputs of similarity searches based on a single bioactive
reference structure and on its nearest neighbors (of unknown activity) is more effective (in
terms of numbers of high-ranked active structures) than a similarity search involving just the
reference structure. This turbo similarity searching approach provides a simple way to enhance
the effectiveness of simulated virtual screening searches of the MDL Drug Data Report
database.

Introduction

Virtual screening involves scoring the molecules in a
chemical database in order of decreasing probability of
biological activity to ensure that potential hits are
synthesized and tested at as early a stage as possible
in a lead-discovery program.1-3 There is much interest
in structure-based approaches for virtual screening,
where a 3D structure is available for the biological
target.4,5 When such information is not available, ligand-
based approaches such as pharmacophore searching,6
substructural analysis,7 and similarity searching8 can
be used. Here, we focus on the last of these approaches.
Similarity searching involves taking a molecule with the
required activity, such as a weak hit from a high-
throughput screening program, and then searching this
target or reference structure against a database to find
the molecules that are most similar to it.

There are many different types of similarity meas-
ure;9-12 however, by far the most widely used are those
based on 2D fingerprints and an association coefficient,
most commonly the Tanimoto coefficient.8 These were
found to be effective in operation, and they are also
extremely efficient, involving just simple logical opera-
tions on binary strings to compute the number of bits
common to a pair of fingerprints. Fingerprint-based
similarity searching is now some 20 years old;13,14

however, the technique is of continuing interest,15-22

and this paper provides a further contribution to the
development of this popular approach to virtual screen-
ing. Specifically, we report a simple way of enhancing
the effectiveness of similarity-based virtual screening,
using information about the nearest neighbors (NNs)
of the initial target structure in a similarity search. We
refer to this approach as turbo similarity searching; a
turbocharger increases the power of an engine by using
the engine’s exhaust gases, and here, we increase the
power of a similarity searching procedure by using the
reference structure’s nearest neighbors. In the following,

we refer to similarity searching and turbo similarity
searching as Sim and TurboSim, respectively, with the
latter being based on two observations: (1) the general
applicability of the similar property principle and (2)
our recent work on the use of multiple reference
structures for similarity searching.23-25

The similar property principle was first presented
explicitly by Johnson and Maggiora26 and states that
molecules that are structurally similar are likely to have
similar properties (an idea that also underlies structural
approaches to molecular diversity and chemogenom-
ics27,28). If the principle applies to a particular biological
activity and set of compounds, then the NNs of a
bioactive reference structure are also likely to possess
that activity. There are many exceptions to the prin-
ciple,29 with even very minor structural variations
having a drastic effect on the levels of activity in a set
of analogues. However, if the principle was not of
general applicability, then it would be difficult to
develop systematic approaches for the identification of
novel bioactive molecules, and there is now substantial
evidence to support its use in lead-discovery pro-
grams.20,22,30-32

Most studies of similarity searching have considered
the use of only a single bioactive reference structure.
The availability of published competitor compounds or
hits from high-throughput screening (HTS) means that
multiple reference structures may be available, and this
has spurred interest in similarity searching methods
that can make use of such information.15,33,34 We
recently reported a detailed comparison of several
different search algorithms that can be used when
multiple reference structures are available and showed
that the best of these algorithms, a technique we call
group fusion, results in a level of retrieval effectiveness
that is noticeably superior to that obtainable from the
use of a single reference structure. Subsequent studies
have demonstrated the general applicability of this
approach when used with a wide range of different types
of 2D fingerprint and of different types of similarity
coefficient.23-25 The power of the approach was demon-
strated by the finding that fusing the rankings from as
few as 10 randomly selected reference structures was
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more effective than the very best similarity search
possible even when there were many hundreds of
individual active molecules to choose from.23

Previous work has hence shown that using multiple
active reference structures in a similarity search is more
effective than using a single active reference structure
and that the NNs of an active reference structure are
also likely to be active. The combination of these two
observations suggests that a turbo similarity search, i.e.,
one involving a reference structure and its NNs (re-
ferred to subsequently as TurboSim), is likely to be more
effective than a similarity search involving just that
reference structure on its own (referred to subsequently
as Sim). If this can be shown to be the case, then we
have an extremely simple way of enhancing the ef-
fectiveness of a conventional similarity searching system
by adopting the strategy summarized in Figure 1. The
appropriateness of the strategy is investigated in the
remainder of this paper.

Methods

If the TurboSim strategy in Figure 1 is to be effective,
i.e., if it is to yield a greater number of high-ranked
actives than the number obtainable from the original
reference structure R on its own, then we must first
identify an appropriate way of combining the sorted lists
SD(0)-SD(k) and, second, demonstrate that the NNs
of R are also able to retrieve active structures from the
database D.

Data fusion is the name given to a body of techniques
that are used to combine the results of different rank-
ings of a database in response to a reference structure
(the name consensus scoring is often used when a
database is ranked using a docking algorithm). Previous
studies of data fusion have used a single reference
molecule that is characterized by several different
representations or matched with the database using
several different similarity coefficients.16,35,36 The alter-
native group fusion approach has a single representa-
tion and a single similarity coefficient but involves
combining the search outputs obtained with several
different reference structures.25 Specifically, assume
that some database molecule j yields similarity scores
of s1, s2, ..., sk with k different reference structures. Then
an effective similarity search can be obtained by ranking
the database molecules on the basis of the largest of
these scores, i.e., max{s1, s2, ..., si, ..., sn-1, sk}.23 The
similarity scores in all of the experiments reported in
this paper were computed using the Tanimoto coef-
ficient, with the reference and database structures
characterized by Scitegic ECFP_4 fingerprints. These
fingerprints encode circular substructures centered on
each non-hydrogen atom in a molecule by a string of
extended connectivity values that are calculated using

a modification of the Morgan algorithm. ECFP stands
for extended connectivity fingerprint. At this level of
description, each atom is initially coded by an integer
describing that atom’s number of connections, element
type, charge, and mass, and the 4 denotes the diameters
of the circular substructures that are encoded in the
fingerprint. The Scitegic software represents a molecule
by a list of integers each describing a molecular feature
and each in the range -231 to 231. Here, the integers
describing a molecule were hashed to a string of 1024
bits as described previously by Hert et al.24

The extent to which the procedure shown in Figure 1
can enhance retrieval effectiveness was studied using
the simulated virtual-screening system employed in our
previous studies of similarity searching using multiple
reference structures.23,24 Specifically, we used a version
of the MDL Drug Data Report (MDDR) database from
which we removed duplicates and molecules that could
not be processed using local software to give a total of
102 514 molecules that were available for searching.
This database was searched using the 11 sets of bioac-
tive compounds noted in Table 1, with Sim and Turbo-
Sim searches being carried out for all of the 8294 active
molecules in these 11 classes.

Results and Discussion

An initial experiment was carried out to confirm that
the data sets studied here satisfy the similar property
principle, as this is an inherent assumption underlying
TurboSim. The probability that a particular database
compound would be active was plotted as a function of
its rank, i.e., the part of a ranked list in which it would
occur during a conventional similarity search. This
probability was obtained by averaging the number of
times a compound at a given rank was active when
averaged over all of the 8294 individual similarity
searches. The results are shown in Figure 2, which
confirms the potential of NNs for TurboSim searching.
Inspection of the inset shows that the first 15 NNs have
a probability of about 0.6 or more of being active.
Analogous relationships between similarity scores (rather
than rank positions) and probability of activity have
been noted by previous workers.31,32,37,38

The searches here are evaluated by the recall at 5%,
i.e., the percentage of the database molecules belonging
to the same activity class as the reference structure that
is retrieved in the top 5% of a ranking of the database.

Figure 1. Use of nearest neighbors for turbo similarity
searching.

Table 1. Mean Recall at 5% for Conventional Similarity
Searching (Sim) with Just a Single Reference Structure and
Turbo Similarity Searching (TurboSim) Using Different
Numbers of NNs

number of NNs in
TurboSim

activity class actives Sim 5 10 20 50 100

5HT3 antagonists 752 31.7 34.8 36.8 38.6 42.1 44.0
5HT1A agonists 827 26.3 28.1 29.6 31.8 34.5 36.2
5HT reuptake inhibitors 359 21.6 23.4 24.0 23.8 24.3 24.1
D2 antagonists 395 25.1 25.8 26.9 27.5 29.1 30.3
renin inhibitors 1130 90.4 91.2 92.1 93.1 94.3 94.7
angiotensin II AT1 antagonists 943 77.4 80.8 83.5 86.7 90.2 92.0
thrombin inhibitors 803 44.5 45.6 47.1 48.3 51.0 50.7
substance P antagonists 1246 28.6 30.5 31.7 32.2 33.3 34.1
HIV protease inhibitors 750 51.6 51.9 52.6 53.3 54.5 55.2
cyclooxygenase inhibitors 636 13.7 14.6 15.0 15.3 15.1 14.4
protein kinase C inhibitors 453 21.0 21.1 21.1 21.1 20.9 20.6
average over all classes 754 39.2 40.7 41.9 42.9 44.5 45.1
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The principal results of the study are listed in Table 1,
which lists the mean recalls averaged over all of the
individual active molecules in each activity class when
a TurboSim search is carried out using the specified
number of NNs (5, 10, 20, 50, or 100). The table also
contains the comparable results for a conventional
similarity search (Sim). Inspection of this table shows
that TurboSim is nearly always superior to Sim in its
ability to identify active molecules, with the only excep-
tions being the protein kinase C TurboSim-50 and
TurboSim-100 searches. With some of the other activity
classes, the increases in performance are really quite
marked, most notably the 5HT3 and 5HT1A agonists
where TurboSim-100 has mean recalls of 44.0 and 36.2
that are 38.8% and 37.6% higher than the corresponding
Sim results. Even a small number of NNs is generally
sufficient to bring about a noticeable increase in the
number of actives retrieved; for example, the TurboSim-
10 searches have a mean recall of 41.8 that is some 6.9%
higher than the corresponding Sim result.

It is perhaps surprising that the best results are
generally obtained with the largest number of NNs,
since Figure 1 shows clearly that the probability that
an NN is active drops off rapidly as one moves down
the ranking of a data set. However, the fact that the
average recall does increase, even with 100 NNs, means
that these molecules are providing useful information.
This situation is analogous to that described in a very
recent paper by Klon et al.,39 who considered high-
scoring molecules in a docking study to be active
(irrespective of whether this was the case) and then used
this information in a subsequent substructural analysis
study. At some point, one would assume that the
inclusion of further NNs would start to affect the
retrieval performance. For the activity classes studied
here, we found that use of 100 NNs was significantly
better than use of 200 NNs and we have hence not
included results for the latter number of NNs in Table
1.

In a conventional similarity search, the search output
reflects the direct relationships (as encoded in the
molecules’ 2D fingerprints) that exist between the
reference structure and the database that is being
searched. As a result of the fusion that has taken place,
a TurboSim search output additionally accounts for the
indirect relationships (as encoded in the NNs) that the

reference structure has with the database. Because one
is bringing this additional information to bear in a
TurboSim search, it seems reasonable that the search
performance should increase. However, as one includes
more and more NNs in a TurboSim search, the struc-
tural relationships that the reference structure has with
the NNs will become more and more tenuous. Some of
them may have very low similarities with the reference
structure and hence (following Figure 1) a low prob-
ability of activity. There is hence the possibility that the
use of many NNs will result in the inclusion of less and
less useful structural information; i.e., one is progres-
sively adding background noise rather than any mean-
ingful signal. A natural modification to the basic Tur-
boSim procedure is hence to employ a user-defined
similarity threshold in addition to the user-defined
number of NNs; however, while this may result in less
noise, it may also result in there being insufficient NNs
with this degree of similarity with the reference struc-
ture. That there is such a tradeoff is illustrated by the
results in Table 2, which lists the mean results (aver-
aged over all of the activity classes) obtained when
Tanimoto thresholds of 0.3, 04, 0.5, 0.6, and 0.7 were
used in TurboSim-100 searches and also lists the mean
number of NNs (averaged over all of the searches) when
that threshold was used. It will be seen that the best
results are obtained with the lowest threshold of 0.3 and
that the average mean of the recalls with this threshold
is better than when no threshold is defined. The fact
that the best results are obtained with a Tanimoto value
as low as 0.3 may appear surprising given previous
studies suggesting that two compounds require a Tan-
imoto similarity of about 0.7-0.8 to have a similar
bioactivity.37,38 However, the numbers of NNs in Table
2 demonstrate clearly that there are normally far too
few close neighbors at this similarity level using these
particular fingerprints to enable the group fusion to be
effective.

The statistical significance (or otherwise) of the dif-
ferences in recall performance of Sim and TurboSim was
assessed using the sign test, as advocated by van
Rijsbergen for the comparison of pairs of database
search results.40 Specifically, the null hypothesis HO was
tested that there was no difference in recall between
Sim and TurboSim, as detailed in Table 3. First, we
considered the activity classes as a whole, giving a total
of 11 cases where TurboSim could be superior (in terms
of mean recall), equal, or inferior to Sim. In the sign
test, the numbers of nonequal cases are used in a
calculation based on the binomial distribution.41 HO
could be rejected with p e 0.006 for all sets of TurboSim
searches listed in Table 3. The Sign Test was then
repeated but considering each of the individual active
molecules in turn, giving a total of 8294 cases where
TurboSim could be superior, equal, or inferior to Sim.
Here, the large-sample version of the sign test was used,
involving a calculation based on the normal distribu-

Figure 2. Average probability of a compound being active as
a function of its rank. The inset shows the left-hand part of
the plot (right at the top of the ranking) in greater detail.

Table 2. Mean Recall at 5% for Turbo Similarity Searches
Using 100 NNs and a Threshold Value for the Tanimoto
Similarity

similarity threshold

0.3 0.4 0.5 0.6 0.7

average number of NNs 81.6 44.1 20.3 7.8 2.9
average over all classes 45.2 44.0 42.0 40.2 39.5
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tion.41 HO could be rejected with p e 0.00003 for all the
TurboSim searches listed in Table 3. A sign test was
also carried out to compare the 8294 TurboSim-100
searches with the corresponding TurboSim-100 searches
when a threshold of 0.3 is applied. This test showed the
latter to be significantly better (p < 0.00003).41

For comparison with the results in Tables 1 and 2,
Table 4 lists the results from sets of searches using two
lower-bounds and two upper-bounds. The lower-bounds
were obtained by carrying out a TurboSim search using
the inactives in the set of 100 NNs or using the top-
ranked 100 inactive NNs. Although both values are
noticeably less than the basic recall of 39.2% in Table
1, they are also much greater than the recall value that
would be obtained by random selection, i.e., 5%. The
effectiveness of these lower-bound searches may appear
rather surprising; however, it simply means that even
when inactive molecules are used in TurboSim, the
molecules still contain sufficient relevant substructures
in common with the reference structure to enable the
identification of further active molecules. The two
upper-bound searches demonstrate the performance
available with full knowledge of the actives; when one
uses a set of 100 active NNs, the search performance is
very much greater than with TurboSim-100 (where one
assumes that all of the top-100 NNs are active). When
just the true actives in the top-100 NNs are used, the
performance is much closer to TurboSim-100 (where one
includes these actives and further molecules that are
assumed to be active but that are actually inactive).

The data in Table 4 help to explain why TurboSim is
effective in practice. The NNs of the reference structure,
all of which are assumed to be active in a TurboSim
search, are of two types: those that really are active
and those that really are inactive. The upperbound

searches demonstrate that use of the former has a
considerable positive effect on search performance, while
the lowerbound searches demonstrate that the use of
the latter has only a marginal effect on search perfor-
mance. Taken together, these two types of behavior yield
the overall enhancements demonstrated in Table 1. A
further, more qualitative reason may explain why
TurboSim seems to work well in practice. The inclusion
of NN-based similarity searches in TurboSim results in
a broadening of the focus that characterizes a conven-
tional Sim search. This means that the search can better
explore the chemical space if the desired active mol-
ecules are not tightly clustered together (as in the
normal expectation in Sim). Such islands of activity are
known to exist.42-44 If this is the case, then we would
expect that TurboSim would become progressively bet-
ter than Sim as the diversity of the actives increases.
Recent work in Sheffield demonstrates that this behav-
ior is observed in practice, validating the use of Turbo-
Sim for scaffold hopping applications.45

The results in Tables 2 and 3 involved the use of a
fixed number of NNs and the use of a similarity
threshold for TurboSim. However, it is possible to
consider more complex ways of using the NN informa-
tion, for example, by scaling the results so that ranked
lists resulting from NNs that are strongly similar to the
reference structure contribute more to the final fused
ranking than do the lists from the less similar NNs.
Variations of this idea for ranking databases of text
documents have been discussed by Croft et al.;46 how-
ever, we found that such variations were not particu-
larly effective in the current context, and they are hence
not discussed here. Similar comments apply to Turbo-
Sim-5 to TurboSim-100 searches based on sets of
compounds obtained by applying a MaxMin diversity
selection algorithm to the set of 200 NNs for each
reference structure.

In the final set of experiments, as in our previous
study24 and as advocated recently by Good et al.,47 we
looked at the ability of TurboSim to identify not just
active molecules but active ring scaffolds, i.e., scaffolds
that occur in the sets of bioactive molecules for each of
the 11 MDDR activity classes. Table 5 lists the recall
at 5% for four different levels of ring specificity defined
in the MEQI software from Pannanugget Consulting,
as exemplified in Figure 3: cyclic systems, skeletal cyclic
systems, reduced-aryl cyclic systems, and reduced-
skeletal cyclic systems. The trends in this table mirror
closely those in Table 2, with TurboSim again resulting
in noticeable increases in recall. The largest increases
are associated with the most detailed level of descrip-
tion, i.e., the cyclic systems.

Thus far, we focused on the effectiveness of the
process in terms of its ability to retrieve active mol-

Table 3. Data Used as Input to the Sign Test Analysis of the
Significance of the Differences in Recall Performance between
Sim and TurboSim

all 11 activity classes all 8294 active molecules

NNs
TurboSim

> Sim
TurboSim

) Sim
TurboSim

< Sim
TurboSim

> Sim
TurboSim

) Sim
TurboSim

< Sim

5 11 0 0 4804 195 3295
10 11 0 0 5361 157 2776
20 11 0 0 5815 128 2351
50 10 0 1 6378 100 1816
100 10 0 1 6451 78 1765
100
(0.3)

11 0 0 6547 80 1667

Table 4. Mean Recall at 5% of Two Types of Upper-Bounds
and Lower-Bounds for TurboSim

upper-bounds lower-bounds

activity classes

ref + actives
among the
100 NNs

ref + 100
active
NNs

inactives
among
the 100

NNs

100
inactive

NNs

5HT3 antagonists 49.4 65.7 33.5 32.1
5HT1A agonists 38.0 55.3 31.7 31.9
5HT reuptake inhibitors 27.8 62.8 21.7 21.7
D2 antagonists 30.6 68.6 28.7 28.8
renin inhibitors 95.2 96.6 90.2 89.8
angiotensin II AT1

antagonists
91.6 95.2 90.9 92.2

thrombin inhibitors 58.6 71.6 37.4 33.9
substance P antagonists 42.2 53.8 20.4 15.8
HIV protease inhibitors 59.8 76.1 50.8 49.0
cyclooxygenase inhibitors 17.5 49.2 12.5 12.0
protein kinase C inhibitors 23.2 58.1 18.4 18.3
average over all classes 48.5 68.4 39.6 38.7

Table 5. Mean Recall at 5% (Averaged over all 11 Activity
Classes) of Active Ring Systems for Conventional Similarity
Searching (Sim) with Just a Single Reference Structure and
Turbo Similarity Searching (TurboSim) Using Different
Numbers of NNs

ring definition Sim
Turbo-
Sim-5

Turbo-
Sim-10

Turbo-
Sim-20

Turbo-
Sim-50

Turbo-
Sim-100

cyclic systems 40.9 42.6 43.7 44.8 46.3 46.8
skeletal cyclic systems 42.2 43.8 44.9 45.9 47.3 47.6
reduced-aryl cyclic systems 43.4 44.8 45.8 46.6 47.7 47.8
reduced-skeletal cyclic

systems
45.0 46.3 47.3 48.1 48.9 48.9
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ecules; however, no database-searching procedure will
be of practical utility unless its efficiency enables it to
be implemented on large files on a routine basis. If large
numbers of NNs are to be used, then search times will
necessarily be much extended, as inspection of Figure
1 would suggest that use of k NNs in the TurboSim will
require the additional calculation of k times as many
similarity coefficients as will Sim. In fact, search times
can be minimized by the following procedure: execute
the search of the database for the original reference
structure; identify its NNs and note the value of the
similarity coefficient for each of the database molecules;
carry out a second search of the database, with each
database molecule being matched against all of the k
NNs, updating its associated maximum score if ap-
propriate. This will require just two scans of the
database, rather than the k + 1 scans that would be
required by a straightforward implementation of Figure
1. In our implementation with C programs running
under Unix on a Linux PC, the TurboSim-100 searches
were only about 5 times slower than the basic SS
searches.

In conclusion, we briefly compare TurboSim with
other ways of using NN information in a similarity
search. A basic similarity search, referred to here as
Sim, involves simply matching the reference structure
against each of the molecules in the database to find
the NNs. There are at least three obvious extensions,
the first of which is iterative, or sequential, similarity
searching. Here, the NNs resulting from the initial
search are assayed, and those that prove to be active
are then used as reference structures in their own right
for database searches. Rather than using these active
NNs individually, a second extension is to use the set
of them in a group fusion procedure in which the
database is ranked against all of the active NNs and
the resulting rankings are fused using a fusion rule such
as the sum or the maximum of the similarity scores or
the similarity ranks. In the third extension, the active
NNs can be combined with those NNs that proved to
be inactive in the assay, and the resulting set of actives
and inactives can be used as a training set for a
machine-learning procedure (such as substructural
analysis, a support vector machine, or binary kernel
discrimination). While such procedures are known to be
highly effective, they all require some biological testing
that is carried out on the ranked output resulting from
the initial similarity search to identify those NNs that
are truly active. The TurboSim procedure, conversely,
assumes that the NNs are active and uses this assump-

tion to maximize the effectiveness of the ranking result-
ing from the initial search based on the single active
reference structure. Once this ranking has been gener-
ated, the NNs are assayed and any of the procedures
above can be invoked in the normal way. The only
previous work of which we are aware that is related to
the TurboSim approach is a recent study of reduced
graphs by Harper et al.48 Here, an initial similarity
search is carried out using reduced-graph representa-
tions of the reference structure of the database mol-
ecules. The NNs resulting from this search are inspected
manually and then some of them selected for use in a
subsequent group-fusion similarity search based on
Daylight fingerprint representations; i.e., manual selec-
tion is used for the second-stage search rather than the
bioassays required for the three extensions noted previ-
ously.

Conclusions

In this paper we showed that it is possible to increase
the effectiveness of similarity-based virtual screening
by carrying out multiple database searches using the
nearest neighbors resulting from an initial similarity
search. The approach requires no modifications to
existing similarity software other than the ability to fuse
the outputs of the multiple searches to give a single
combined ranking of the database structures. These
increases in search effectiveness are achieved at mini-
mal computational cost, and we hence conclude that
turbo similarity searching provides a very simple way
of increasing the cost effectiveness of similarity-based
virtual screening systems. Our experiments have used
2D fingerprints and the Tanimoto coefficient, but there
is no reason in principle why this approach could not
also be used with any other type of similarity measure
that satisfies the similar property principle.
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